By Topic

Transient analysis of distortion and coupling in lossy coupled microstrips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. P. K. Gilb ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; C. A. Balanis

The transient response of lossy coupled microstrips is studied using the spectral-domain approach (SDA) to rigorously compute the dielectric losses. The dielectric loss coefficient is computed using the SDA with a complex dielectric constant, and results are compared with those obtained by the formula advanced by M.V. Schneider (1969) using a finite-difference approximation for the partial derivative. Transient coupling is formulated in the frequency domain by an even/odd mode approach, showing how differences in either the modal loss coefficients or modal propagation constants can be responsible for coupling between lines. Results for pulse distortion on a semiconductor substrate are presented, showing how losses reduce the signal amplitude without significantly distorting the shape

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:38 ,  Issue: 12 )