Cart (Loading....) | Create Account
Close category search window

Non-contiguous processor allocation in the mesh-connected multicomputers using compaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bani-Mohammad, S. ; Dept. of Comput. Sci., Al al-Bayt Univ., Mafraq, Jordan ; Ababneh, I. ; Yassen, M.

In non-contiguous allocation, a job request can be split into smaller parts that are allocated possibly non-adjacent free sub-meshes rather than always waiting until a single sub-mesh of the requested size and shape is available. Lifting the contiguity condition is expected to reduce processor fragmentation and increase system utilization. However, the distances traversed by messages can be long, and as a result the communication overhead, especially contention, is increased. The extra communication overhead depends on how the allocation request is partitioned and assigned to free sub-meshes. In this paper, a new non-contiguous processor allocation strategy, referred to as A Compacting Non-Contiguous Processor Allocation Strategy (CNCPA), is suggested for the 2D mesh networks. In the proposed strategy, a single job is compacting into more than one free location within the allocated processors, where the remaining available processors (free processors) form a large sub-mesh in the system. To evaluate the performance improvement achieved by the proposed strategy and compare it against well-known existing non-contiguous allocation strategies, we conduct extensive simulation experiments under the assumption of wormhole routing and the one-to-all and near neighbor communication patterns. The results show that the proposed strategy can eliminate both the internal and external fragmentation and reduce the communication overhead and hence improve performance in terms of job turnaround time and system utilization.

Published in:

Computer Systems and Industrial Informatics (ICCSII), 2012 International Conference on

Date of Conference:

18-20 Dec. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.