By Topic

Optimized design of electric field grading systems in 115 kV non-ceramic insulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dominguez, D.C. ; SEPIESIME-Zacatenco, Nat. Polytech. Inst. U.P. Adolfo Lopez Mateos Lindavista, Mexico City, Mexico ; Espino-Cortes, F.P. ; Gomez, P.

In this work two stress grading options for 115 kV non-ceramic suspension insulators are analyzed by means of 2D and 3D simulations. Both options were optimized in order to compare the maximum reduction that can be obtained on the electric field at the surface of the insulator. In the first option the shape and permittivity value of the housing material next to the energized end were the optimized parameters. For the second option, the installation of a corona ring, the position and dimensions of the ring were optimized. Electric field simulations were performed with the finite element method (FEM) while for the optimization process different functions of the MATLAB optimization toolbox were used. The optimization was performed with 2D FEM simulations and the optimal designs were then used on 3D models, in order to verify that these designs remain as the best option. According to the results, it was found that the use of a corona ring in 115 kV lines produces the maximum reduction of electric field as long as it is installed in the optimal position. A modification of the housing profile next to the energized end will also produce a significant reduction on the maximum electric field on 115 kV non-ceramic insulators.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:20 ,  Issue: 1 )