By Topic

Learning Incoherent Dictionaries for Sparse Approximation Using Iterative Projections and Rotations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barchiesi, D. ; School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK ; Plumbley, M.D.

This article deals with learning dictionaries for sparse approximation whose atoms are both adapted to a training set of signals and mutually incoherent. To meet this objective, we employ a dictionary learning scheme consisting of sparse approximation followed by dictionary update and we add to the latter a decorrelation step in order to reach a target mutual coherence level. This step is accomplished by an iterative projection method complemented by a rotation of the dictionary. Experiments on musical audio data and a comparison with the method of optimal coherence-constrained directions (mocod) and the incoherent k-svd (ink-svd) illustrate that the proposed algorithm can learn dictionaries that exhibit a low mutual coherence while providing a sparse approximation with better signal-to-noise ratio (snr) than the benchmark techniques.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 8 )