By Topic

Improving the Dynamics of Virtual-Flux-Based Control of Three-Phase Active Rectifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Gonzalez Norniella, J. ; Dept. of Electr. Eng., Oviedo Univ., Gijon, Spain ; Cano, J.M. ; Orcajo, G.A. ; Rojas, C.H.
more authors

Virtual flux (VF)-oriented control (VFOC) and VF-based direct power control (DPC) (VF-DPC) have been developed to improve voltage-oriented control and DPC of three-phase active rectifiers. The VF space vector is utilized in transformations between stationary and rotating coordinates in VFOC and in obtaining instantaneous power in VF-DPC. The VF space vector is calculated by integrating the grid voltage space vector. This integration is usually performed using a first-order low-pass (LP) (FOLP) filter, which counteracts the saturation and dc-drift problems associated with pure integrators. However, the dynamics of FOLP filters can be enhanced to a great extent. This paper presents a new, simple, and fast integration algorithm for VF-based control methods. Simulations and experimental tests on a VF-DPC-based system showed that the proposed algorithm leads to rapid recoveries after grid voltage sags occur. Moreover, the performance of VF-DPC under nonideal grids is discussed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:61 ,  Issue: 1 )