Cart (Loading....) | Create Account
Close category search window
 

Absorption, Gain, and Threshold in InP/AlGaInP Quantum Dot Laser Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Al-Ghamdi, M.S. ; Dept. of Phys., King Abdulaziz Univ., Jeddah, Saudi Arabia ; Smowton, P.M. ; Shutts, S. ; Blood, P.
more authors

We study self-assembled InP quantum dot (QD) laser structures grown at two temperatures (690°C and 730 °C) each with three different quantities of deposited quantum dot material (2, 2.5, and 3 mono-layers). The absorption spectra of these structures show features associated with the QD distributions and the magnitude of the absorption increases for samples where more material is deposited and for lower growth temperature. The 690°C growth temperature structures exhibit nonradiative recombination and internal optical mode loss that increase with the quantity of material deposited; we suggest that the laser performance is limited by the presence of defects. The higher growth temperature samples have lower threshold current density and are limited by gain saturation. For these samples and for 2-mm long lasers with uncoated facets, the threshold current density is as low as 150 A cm-2, emitting in the wavelength range around 730 nm.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.