By Topic

Exploring social approach to recommend talks at research conferences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, D.H. ; Sch. of Inf. Sci., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Brusilovsky, P.

This paper investigates various recommendation algorithms to recommend relevant talks to attendees of research conferences. We explored three sources of information to generate recommendations: users' preference about items (i.e. talks), users' social network and content of items. In order to find out what is the best recommendation approach, we explored a diverse set of algorithms from non-personalized community vote-based recommendations and collaborative filtering recommendations to hybrid recommendations such as social network-based recommendation boosted by content information of items. We found that social network-based recommendations fused with content information and non-personalized community vote-based recommendations performed the best. Moreover, for cold-start users who have insufficient number of items to express their preferences, the recommendations based on their social connections generated significantly better predictions than other approaches.

Published in:

Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2012 8th International Conference on

Date of Conference:

14-17 Oct. 2012