By Topic

Biogeography Based Optimal State Feedback Controller for Frequency Regulation of a Smart Microgrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mishra, S. ; Dept. of Electr. Eng., Indian Inst. of Technol. Delhi, New Delhi, India ; Mallesham, G. ; Sekhar, P.C.

Development of “Q” and “R” matrices for designing a Linear Quadratic Regulator (LQR) is still a research challenge. The theory says they should belong to the group of positive definite matrices, so we need to find out the most suitable amongst them in order to obtain the desired response. In this paper biogeography based optimization (BBO) technique has been applied to come up with the best “Q” and “R” matrices such that the frequency excursion following a disturbance in a microgrid is minimized. As all the states in a practical system may not be measurable hence, we have used Kalman estimator to estimate them. These estimated states along with other measured states are used by the LQR to produce the desired control signal. The microgrid is made smarter by using the agent based scheme integrated with a master controller and a proper communication protocol. The simulation results show that the proposed approach improves the microgrid frequency response and also gives a new alternative method for frequency control of a smart microgrid.

Published in:

Smart Grid, IEEE Transactions on  (Volume:4 ,  Issue: 1 )