By Topic

Crop Residue Modeling and Mapping Using Landsat, ALI, Hyperion and Airborne Remote Sensing Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Magda S. Galloza ; School of Civil Engineering, Purdue University, West Lafayette, IN, USA ; Melba M. Crawford ; Gary C. Heathman

Various studies have demonstrated that spectral indices derived from remotely sensed data can be used to quantify crop residue cover, if adequately calibrated using in situ data. This study evaluates the capability of the Normalized Difference Tillage Index (NDTI) derived from Advance Land Imager (ALI) relative to that of Landsat Thematic Mapper (TM) and the performance of the Cellulose Absorption Index (CAI) derived from Hyperion and airborne hyperspectral data acquired over central Indiana watersheds. A framework based on Cumulative Distribution Function (CDF) matching is also proposed to leverage the superior predictive capability of hyperspectral based indices to improve predictions of multispectral based indices over extended regions. ALI data consistently yielded crop residue models with lower root mean square error (RMSE) values than those developed using Landsat TM data. Hyperspectral based indices were generally superior in predictive capability to the NDTI based predictions. Observation operators derived from the CDF matching method were successful in scaling multiple data sets to achieve models with lower RMSE and improved predictive capability over the entire range of index values.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 2 )