By Topic

Complex-Valued Filtering Based on the Minimization of Complex-Error Entropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Songyan Huang ; Dept. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China ; Chunguang Li ; Yiguang Liu

In this paper, we consider the training of complex-valued filter based on the information theoretic method. We first generalize the error entropy criterion to complex domain to present the complex error entropy criterion (CEEC). Due to the difficulty in estimating the entropy of complex-valued error directly, the entropy bound minimization (EBM) method is used to compute the upper bounds of the entropy of the complex-valued error, and the tightest bound selected by the EBM algorithm is used as the estimator of the complex-error entropy. Then, based on the minimization of complex-error entropy (MCEE) and the complex gradient descent approach, complex-valued learning algorithms for both the (linear) transverse filter and the (nonlinear) neural network are derived. The algorithms are applied to complex-valued linear filtering and complex-valued nonlinear channel equalization to demonstrate their effectiveness and advantages.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 5 )