By Topic

Integration of Offshore Wind Farm Using a Hybrid HVDC Transmission Composed by the PWM Current-Source Converter and Line-Commutated Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Torres-Olguin, R.E. ; Dept. of Electr. Power Eng., Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; Garces, A. ; Molinas, M. ; Undeland, T.

This paper investigates the feasibility of the application of a hybrid HVDC transmission system for the grid integration of offshore wind farms. The proposed hybrid HVDC consists of a pulse width modulated current source converter (PWM-CSC) and a line-commutated converter (LCC). The PWM-CSC is connected to the offshore wind farm and the LCC connects the onshore grid. The hybrid topology takes advantages from self-commutated converters as well as LCCs. On the one hand, LCC-based HVdc is the most mature technology with the lowest power losses and lowest cost. On the other hand, PWM-CSC has the same features that a voltage source converter for offshore applications, i.e., the ability to operate without an external commutation voltage, reactive power control capability, and a relative small footprint. Moreover, both the PWM-CSC and the LCC are current source converters and hence the coupling can be effortlessly done. The control design for the entire system is presented and verified using numerical simulations. Simulations are performed using PSCAD/EMTDC under different conditions including changes in the wind speed and ac and dc faults.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:28 ,  Issue: 1 )