By Topic

Unsupervised Detection of Built-Up Areas From Multiple High-Resolution Remote Sensing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao Tao ; Sch. of Geosci. & Inf.-Phys., Central South Univ., Changsha, China ; Yihua Tan ; Zheng-rong Zou ; Jinwen Tian

Given a set of high-resolution remote sensing images covering different scenes, we propose an unsupervised approach to simultaneously detect possible built-up areas from them. The motivation behind is that the frequently recurring appearance patterns or repeated textures corresponding to common objects of interest (e.g., built-up areas) in the input image data set can help us discriminate built-up areas from others. With this inspiration, our method consists of two steps. First, we extract a large set of corners from each input image by an improved Harris corner detector. Afterward, we incorporate the extracted corners into a likelihood function to locate candidate regions in each input image. Given a set of candidate build-up regions, in the second stage, we formulate the problem of build-up area detection as an unsupervised grouping problem. The candidate regions are modeled through texture histogram, and the grouping problem is solved by spectrum clustering and graph cuts. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 6 )