By Topic

Tensor Ensemble of Ground-Based Cloud Sequences: Its Modeling, Classification, and Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shuang Liu ; State Key Lab. of Manage. & Intell. Control of Complex Syst., Inst. of Autom., Beijing, China ; Chunheng Wang ; Baihua Xiao ; Zhong Zhang
more authors

Since clouds are one of the most important meteorological phenomena related to the hydrological cycle and affect Earth radiation balance and climate changes, cloud analysis is a crucial issue in meteorological research. Most researchers only consider the classification task of cloud images while less attention has been paid to the synthesis one. In addition, all the existing research on cloud identification from sky images is based on single cloud images. However, the cloud-measuring devices on the ground actually take one image of the clouds every few minutes and collect a series of cloud images. Thus, the existing methods neglect the temporal information exhibited by contiguous cloud images. To overcome this drawback, in this letter we treat ground-based cloud sequences (GCSs) as dynamic texture. We then propose the Tensor Ensemble of Ground-based Cloud Sequences (eTGCS) model which represents the ensemble of GCSs in a tensor manner. In the eTGCS model, all GCSs form a single tensor, and each GCS is a subtensor of the single tensor. There are two main characteristics of the eTGCS model: 1) All GCSs share an identical mode subspace, which makes the classification convenient, and 2) a new GCS can be synthesized as long as the parameters of the eTGCS model are used. Therefore, less storage space is required. Comprehensive experiments are conducted to prove the superiority of our eTGCS model. The classification accuracy achieves 92.31%, and the synthesized GCSs are similar to the original ones in visual appearance.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 5 )