By Topic

Exploration of automatic optimization for CUDA programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mayez Al-Mouhamed ; King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia ; Ayaz ul Hassan Khan

Graphic processing Units (GPUs) are gaining ground in high-performance computing. CUDA (an extension to C) is most widely used parallel programming framework for general purpose GPU computations. However, the task of writing optimized CUDA program is complex even for experts. We present a method for restructuring loops into an optimized CUDA kernels based on a 3-step algorithm which are loop tiling, coalesced memory access, and resource optimization. We also establish the relationships between the influencing parameters and propose a method for finding possible tiling solutions with coalesced memory access that best meets the identified constraints. We also present a simplified algorithm for restructuring loops and rewrite them as an efficient CUDA Kernel. The execution model of synthesized kernel consists of uniformly distributing the kernel threads to keep all cores busy while transferring a tailored data locality which is accessed using coalesced pattern to amortize the long latency of the secondary memory. In the evaluation, we implement some simple applications using the proposed restructuring strategy and evaluate the performance in terms of execution time and GPU throughput.

Published in:

Parallel Distributed and Grid Computing (PDGC), 2012 2nd IEEE International Conference on

Date of Conference:

6-8 Dec. 2012