By Topic

Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Han, Jin-Woo ; Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035, USA ; Kim, BeomSeok ; Li, Jing ; Meyyappan, M.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4790437 

A flexible, compressible, hydrophobic, ice-repelling, floatable, and conductive carbon nanotube (CNT)-polydimethylsiloxane (PDMS) sponge is presented. The microporous sponge-like PDMS scaffold fabricated with a sugar cube template is capable of CNT uptake. The CNT-PDMS sponge (CPS) is deformable and compressible up to 90%. The Young's modulus varies from 22 KPa to 200 KPa depending on the applied strain. The conductive pathways via the CNT network increase with compressive strain similar to a variable resistor or pressure sensor. The softness of the CPS can be utilized for artificial skin to grip sensitive objects. In addition, the contact angle of water droplets on CPS shows 141°, and thus the hydrophobic nature of the CPS can be exploited as a floating electrode. Furthermore, the hydrophobicity is maintained below freezing temperature, allowing an ice-repelling electrode.

Published in:

Applied Physics Letters  (Volume:102 ,  Issue: 5 )