By Topic

An Improved KNN Algorithm Based on Adaptive Cluster Distance Bounding for High Dimensional Indexing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang Hong ; Sch. of Comput. Sci. & Technol., Zhejiang Univ. of Technol., Hangzhou, China ; Guo Juan ; Wang Ben

Because of the intense bounding and the distance of the query vector to the cluster bounding is closer to the true distance, filtering out irrelevant clusters by the distance of the query vector to the cluster bounding in the process of similarity search has well reduced the I/O complexity. Hence, the "curse of dimensionality" can be well avoided. We propose an improved KNN search algorithm based on adaptive cluster distance bounding for high dimensional indexing by reducing the CPU cost which was achieved by filtering out unnecessary distance calculations number using the triangle inequality, but with the cost of some overhead and pretreatment. Finally, we verify the improved exact KNN search algorithm has a better performance through some experiments based on a real data set.

Published in:

Intelligent Systems (GCIS), 2012 Third Global Congress on

Date of Conference:

6-8 Nov. 2012