By Topic

Complex Coevolutionary Dynamics—Structural Stability and Finite Population Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peter Tiňo ; Schoolof Computer Science, University of Birmingham, Edgbaston, Birmingham, U.K. ; Siang Yew Chong ; Xin Yao

Unlike evolutionary dynamics, coevolutionary dynamics can exhibit a wide variety of complex regimes. This has been confirmed by numerical studies, e.g., in the context of evolutionary game theory (EGT) and population dynamics of simple two-strategy games with various types of replication and selection mechanisms. Using the framework of shadowing lemma, we study to what degree can such infinite population dynamics: 1) be reliably simulated on finite precision computers; and 2) be trusted to represent coevolutionary dynamics of possibly very large, but finite, populations. In a simple EGT setting of two-player symmetric games with two pure strategies and a polymorphic equilibrium, we prove that for (\mu,\lambda ) , truncation, sequential tournament, best-of-group tournament, and linear ranking selections, the coevolutionary dynamics do not possess the shadowing property. In other words, infinite population simulations cannot be guaranteed to represent real trajectories or to be representative of coevolutionary dynamics of potentially very large, but finite, populations.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:17 ,  Issue: 2 )