By Topic

Monte Carlo simulation of heavy species (Indium and Germanium) ion implantation into silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
14 Author(s)
Chen, Y. ; Microelectronic Research Center, The University of Texas at Austin, Austin TX, 78712 ; Obradovic, B. ; Morris, M. ; Wang, G.
more authors

Monte Carlo ion-implant models for germanium and indium implantation into single-crystal silicon have been developed and are described in this paper. The models have been incorporated in the UT-MARLOWE ion implantation simulator, and have been developed primarily for use on engineering workstations. These models provide the required as-implanted impurity profiles as well as damage profiles, which can be used as inputs for transient enhanced diffusion simulation and subsequent multiple implant simulation. A comparison of simulation results with experimental data shows that the models predict both the impurity profiles and the damage profiles very successfully for a wide range of implant conditions. The damage profiles from germanium implant simulations have been used for subsequent multiple implant simulations and excellent agreement with experimental results has been achieved.

Published in:

Technology Computer Aided Design TCAD, Journal of