By Topic

Analysis of three-dimensional movement using Fourier descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wallace, T.P. ; School of Electrical Engng., Purdue Univ., West Lafayette, IN, USA ; Mitchell, O.R.

Recent improvements in Fourier descriptor (FD) shape analysis enable rapid identification of three-dimensional objects using FD feature vectors derived from their boundaries. In three-dimensional shape analysis, it is essential to preserve all information to achieve good performance. In the real-time situation it is, of course, equally important to use a computationally efficient method. The method of three-dimensional shape analysis using normalized Fourier descriptors is information preserving, yet is as fast as previous suboptimum methods. In addition, the feature vector has a linear property, allowing to interpolate between library projections and effectively define a continuum of library projections rather than a finite set. This method is applied to the analysis of sequential data varying in resolution and orientation relative to the camera. Computational considerations are discussed, and it is seen that real-time implementation of the method is feasible.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 6 )