Cart (Loading....) | Create Account
Close category search window
 

Model-based image analysis of human motion using constraint propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O'Rourke, J. ; Dept. of Computer & Information Sci., Moore School of Electrical Engng., Univ. of Pennyslvania, PA, USA ; Badler, N.I.

A system capable of analyzing image sequences of human motion is described. The system is structured as a feedback loop between high and low levels: predictions are made at the semantic level and verifications are sought at the image level. The domain of human motion lends itself to a model-driven analysis, and the system includes a detailed model of the human body. All information extracted from the image is interpreted through a constraint network based on the structure of the human model. A constraint propagation operator is defined and its theoretical properties outlined. An implementation of this operator is described, and results of the analysis system for short image sequences are presented.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 6 )

Date of Publication:

Nov. 1980

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.