By Topic

A new method for extracting the counter-implanted channel profile of enhancement-mode p-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien-Min Wu ; Inst. of Electron., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Ching-Yuan Wu, Ph.D.

A new methodology is proposed to extract the nonuniform channel doping profile of enhancement mode p-MOSFETs with counter implantation, based on the relationship between device threshold voltage and substrate bias. A selfconsistent mathematical analysis is developed to calculate the threshold voltage and the surface potential of counter-implanted long-channel p-MOSFET at the onset of heavy inversion. Comparisons between analytic calculation and two-dimensional (2-D) numerical analysis have been made and the accuracy of the developed analytic model has been verified. Based on the developed analytic model, an automated extraction technique has been successfully implemented to extract the channel doping profile. With the aid of a 2-D numerical simulator, the subthreshold current can be obtained by the extracted channel doping profile. Good agreements have been found with measured subthreshold characteristics for both long- and short-channel devices. This new extraction methodology can be used for precise process monitoring and device optimization purposes

Published in:

Electron Devices, IEEE Transactions on  (Volume:44 ,  Issue: 12 )