By Topic

Optimal design of a thermistor probe for surface measurement of cerebral blood flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Wei ; Dept. of Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, USA ; G. M. Saidel ; S. C. Jones

Microthermistors are put on the surface of the cerebral cortex to monitor local cerebral blood flow (CBF) continuously with minimal tissue damage and disturbance to the normal physiological state. Using a distributed, dynamic model of the measurement system, the authors simulated the effects of this flow measurement method under isothermal and adiabatic boundary conditions. Numerical results show that the adiabatic boundary condition can provide maximal sensitivity to perfusion changes at physiological perfusion levels. The constant power and constant temperature operating modes are compared in terms of output relation, sensitivity, and frequency response through analytical and numerical solutions. While the steady-state relations between thermistor measurements and perfusion for the two modes do not differ significantly, the constant temperature mode has better frequency response. Analytical results show that the relative sensitivity is the same for the two modes and is approximately proportional to the radius of thermistor.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:37 ,  Issue: 12 )