Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Truncated power control in code division multiple access communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang Wu Kim ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Goldsmith, A.

We analyze the performance of truncated power control in a code division multiple access communication system. This power control scheme compensates for fading above a certain cutoff fade depth: below the cutoff level an outage is declared. We assume a channel with fast Rayleigh fading and slow, log-normal shadowing, where truncated power control is applied to the shadowing and a RAKE receiver combines the Rayleigh fading multipath components separated by more than a chip time. We investigate the power gain as well as the capacity gain of this power control scheme relative to conventional power control as a function of the outage probability. We find that truncated power control significantly increases the capacity relative to conventional power control, since less power is wasted compensating for deep fading conditions. It is also found that truncated power control is most effective for channels with large power fluctuations or large background noise. We then apply truncated power control to multimedia systems, where different traffic types have different performance requirements (e.g. outage probability, bit error rate, information rate, etc.) For these systems truncated power control can significantly reduce the required transmit power for each traffic type. We conclude by examining the effects of estimation error. For a log-normally distributed estimation error we find that capacity is reduced by a factor of e-(M+1σe2b22)/, where σe is the standard deviation of the error, M is the number of paths in the RAKE receiver, and b=ln 10/10

Published in:

Global Telecommunications Conference, 1997. GLOBECOM '97., IEEE  (Volume:3 )

Date of Conference:

3-8 Nov 1997