Cart (Loading....) | Create Account
Close category search window
 

Analog-to-digital conversion via duty-cycle modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Engel Roza ; Philips Res. Lab., Eindhoven, Netherlands

An exchange of the amplitude axis for the time axis offers a possibility of overcoming resolution problems in analog-to-digital conversion in low-voltage CMOS circuits and/or of circumventing special resistor options in silicided processes. This exchange can be effected via some form of duty-cycle modulation. For its implementation a circuit configuration is described, consisting of an asynchronous sigma-delta modulator, followed by a phase-synchronized tapped ring oscillator which produces a poly-phase signal for sampling the asynchronous signal at a relatively low frequency. A detailed analysis is presented which accurately predicts the properties of the conversion scheme with respect to aliasing, quantization noise and nonlinear distortion. The results are illustrated with simulations of a design example

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 11 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.