By Topic

Stable and efficient reduction of large, multiport RC networks by pole analysis via congruence transformations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kerns, K.J. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; Yang, A.T.

A novel technique is presented which employs pole analysis via congruence transformations (PACT) to reduce RC networks in a well-conditioned manner. Pole analysis is shown to be more efficient than Pade approximations when the number of network ports is large, and congruence transformations preserve the passivity (and thus absolute stability) of the networks. The error incurred by reducing the networks is shown to be bounded by values which are fully selectable by the user. Networks are represented by admittance matrices throughout the analysis, and this representation both simplifies interfacing the reduced networks with circuit simulators and facilitates realization of the reduced networks using RC elements. A prototype SPICE-in, SPICE-out, network reduction CAD tool called RCFIT is detailed, and examples are presented which demonstrate the accuracy and efficiency of the PACT algorithm

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 7 )