By Topic

A new criterion in selection and discretization of attributes for the generation of decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun, B.H. ; Dept. of Comput. Sci., Kongju Nat. Univ., Chungnam, South Korea ; Kim, C.S. ; Hong-Yeop Song ; Jaihie Kim

It is important to use a better criterion in selection and discretization of attributes for the generation of decision trees to construct a better classifier in the area of pattern recognition in order to intelligently access huge amount of data efficiently. Two well-known criteria are gain and gain ratio, both based on the entropy of partitions. We propose in this paper a new criterion based also on entropy, and use both theoretical analysis and computer simulation to demonstrate that it works better than gain or gain ratio in a wide variety of situations. We use the usual entropy calculation where the base of the logarithm is not two but the number of successors to the node. Our theoretical analysis leads some specific situations in which the new criterion works always better than gain or gain ratio, and the simulation result may implicitly cover all the other situations not covered by the analysis

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 12 )