By Topic

A two-path bandpass ΣΔ modulator for digital IF extraction at 20 MHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ong, A.K. ; Center for Integrated Syst., Stanford Univ., CA, USA ; Wooley, B.A.

Oversampled bandpass A/D converters based on sigma-delta (ΣΔ) modulation can be used to robustly digitize the types of narrowband intermediate frequency (IF) signals that arise in radios and cellular systems. This paper proposes a two-path architecture for a fourth-order, bandpass modulator that is more tolerant of analog circuit limitations at high sampling speeds than conventional implementations based on the use of switched-capacitor biquadratic filters. An experimental prototype employing the two-path topology has been integrated in a 0.6-μm, single-poly, triple-metal CMOS technology with capacitors synthesized from a stacked metal structure. Two interleaved paths clocked at 40 MHz digitize a 200-kHz bandwidth signal centered at 20 MHz with 75 dB of dynamic range while suppressing the undesired mirror image signal by 42 dB. At low input signal levels, the mixing of spurious tones at DC and fs/2 with the input appears to degrade the performance of the modulator; out-of-band sinusoidal dither is shown to be an effective means of avoiding this degradation. The experimental modulator dissipates 72 mW from a 3.3 V supply

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:32 ,  Issue: 12 )