By Topic

Logic synthesis for large pass transistor circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Buch, P. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Narayan, A. ; Newton, A.R. ; Sangiovanni-Vincentelli, A.

Pass transistor logic (PTL) can be a promising alternative to static CMOS for deep sub-micron design. The authors motivate the need for CAD algorithms for PTL circuit design and propose decomposed BDDs as a suitable logic level representation for synthesis of PTL networks. Decomposed BDDs can represent large, arbitrary functions as a multistage circuit and can exploit the natural, efficient mapping of a BDD to PTL. A comprehensive synthesis flow based on decomposed BDDs is outlined for PTL design. They show that the proposed approach allows one to make logic-level optimizations similar to the traditional multi-level network based synthesis flow for static CMOS, and also makes possible optimizations with a direct impact on area, delay and power of the final circuit implementation which do nor have any equivalent in the traditional approach. They also present a set of heuristical algorithms to synthesize PTL circuits optimized for area, delay and power which are key to the proposed synthesis flow. Experimental results on ISCAS benchmark circuits show that the technique yields PTL circuits with substantial improvements over static CMOS designs. In addition, to the best of their knowledge this is the first time PTL circuits have been synthesized for the entire ISCAS benchmark set.

Published in:

Computer-Aided Design, 1997. Digest of Technical Papers., 1997 IEEE/ACM International Conference on

Date of Conference:

9-13 Nov. 1997