By Topic

Symbolic analysis of large analog circuits with determinant decision diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shi, C.-J.R. ; Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA ; Xiangdong Tan

Symbolic analog-circuit analysis has many applications, and is especially useful for analog synthesis and testability analysis. We present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. It consists of representing the symbolic determinant of a circuit matrix by a graph-called determinant decision diagram (DDD)-and performing symbolic analysis by graph manipulations. We showed that DDD construction and DDD-based symbolic analysis can be performed in time complexity proportional to the number of DDD vertices. We described a vertex ordering heuristic, and showed that the number of DDD vertices can be quite small-usually orders-of-magnitude less than the number of product terms. The algorithm has been implemented. An order-of-magnitude improvement in both CPU time and memory usage over existing symbolic analyzers ISAAC and Maple-V has been observed for large analog circuits.

Published in:

Computer-Aided Design, 1997. Digest of Technical Papers., 1997 IEEE/ACM International Conference on

Date of Conference:

9-13 Nov. 1997