By Topic

Volterra series transfer function of single-mode fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. V. Peddanarappagari ; Kansas Univ., Lawrence, KS, USA ; M. Brandt-Pearce

A nonrecursive Volterra series transfer function (VSTF) approach for solving the nonlinear Schrodinger (NLS) wave equation for a single-mode optical fiber is presented. The derivation of the VSTF is based on expressing the NLS equation In the frequency domain and retaining the most significant terms (Volterra kernels) in the resulting transfer function. Due to its nonrecursive property and closed-form analytic solution, this method can excel as a tool for designing optimal optical communication systems and lumped optical equalizers to compensate for effects such as linear dispersion, fiber nonlinearities and amplified spontaneous emission (ASE) noise from optical amplifiers. We demonstrate that a third-order approximation to the VSTF model compares favorably with the split-step Fourier (recursive) method in accuracy for power levels used in current optical communication systems. For higher power levels, there is a potential for improving the accuracy by including higher-order Volterra kernels at the cost of increased computations. Single-pulse propagation and the interaction between two pulses propagating at two different frequencies are also analyzed with the Volterra method to verify the ability to accurately model nonlinear effects. The analysis can be easily extended to include inter-channel interference in multi-user systems like wavelength-division multiple-access (WDM), time-division multiplexed (TDM), or code-division multiplexed (CDM) systems

Published in:

Journal of Lightwave Technology  (Volume:15 ,  Issue: 12 )