By Topic

Propagation and stability of optical pulses in nonlinear planar structures with instantaneous and finite response times

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. S. Mitchell ; Phys. Dept., Heriot-Watt Univ., Edinburgh, UK ; J. V. Moloney

The propagation of optical pulses in nonlinear waveguide and directional coupler structures consisting of linear and self-focusing media is studied numerically. Instantaneous and integrating nonlinearities are considered. A comparison of the stability of waveguide modes and coupling characteristics under such conditions is made. Finite medium responses times are shown to lead to an increase in the stability of pulses propagating in waveguide structures. For directional coupler geometries it is shown that finite response times lead to a loss of definition between the cross and bar states as the coupling efficiencies of more intense pulses are increased. These effects are found to be dependent on the initial, spatial, and temporal pulse profiles

Published in:

IEEE Journal of Quantum Electronics  (Volume:26 ,  Issue: 12 )