Cart (Loading....) | Create Account
Close category search window
 

Evaluation of Leakage Reduction Alternatives for Deep Submicron Dynamic Nonuniform Cache Architecture Caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bardine, A. ; Dipt. di Ing. dell'Inf., Univ. di Pisa, Pisa, Italy ; Comparetti, M. ; Foglia, P. ; Prete, C.A.

Wire delays and leakage energy consumption are both growing problems in designing large on-chip caches. Nonuniform cache architecture (NUCA) is a wire-delay aware design paradigm based on the sub-banking of a cache, which allows the banks closer to the controller to be accessed with reduced latencies with respect to the other banks. This feature is leveraged by dynamic NUCA (D-NUCA) caches via a migration mechanism which speeds up frequently used data access, further reducing the effect wire delays have on performance. To reduce leakage power consumption of static random access memory caches, various micro-architectural techniques have been proposed. In this brief, we compare the benefits and limits of the application of some of these techniques to a D-NUCA cache memory, and propose a novel hybrid scheme based on the Drowsy and Way Adaptable techniques. Such a scheme allows further improvement in leakage reduction and limits the impact of process variation on the effectiveness of the Drowsy technique.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.