By Topic

The Role of Hubness in Clustering High-Dimensional Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tomasev, N. ; Jozef Stefan Inst., Artificial Intell. Lab., Jozef Stefan Inst., Ljubljana, Slovenia ; Radovanovic, M. ; Mladenic, D. ; Ivanovic, M.

High-dimensional data arise naturally in many domains, and have regularly presented a great challenge for traditional data mining techniques, both in terms of effectiveness and efficiency. Clustering becomes difficult due to the increasing sparsity of such data, as well as the increasing difficulty in distinguishing distances between data points. In this paper, we take a novel perspective on the problem of clustering high-dimensional data. Instead of attempting to avoid the curse of dimensionality by observing a lower dimensional feature subspace, we embrace dimensionality by taking advantage of inherently high-dimensional phenomena. More specifically, we show that hubness, i.e., the tendency of high-dimensional data to contain points (hubs) that frequently occur in k-nearest-neighbor lists of other points, can be successfully exploited in clustering. We validate our hypothesis by demonstrating that hubness is a good measure of point centrality within a high-dimensional data cluster, and by proposing several hubness-based clustering algorithms, showing that major hubs can be used effectively as cluster prototypes or as guides during the search for centroid-based cluster configurations. Experimental results demonstrate good performance of our algorithms in multiple settings, particularly in the presence of large quantities of noise. The proposed methods are tailored mostly for detecting approximately hyperspherical clusters and need to be extended to properly handle clusters of arbitrary shapes.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 3 )