Cart (Loading....) | Create Account
Close category search window

OCCT: A One-Class Clustering Tree for Implementing One-to-Many Data Linkage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dror, M. ; Dept. of Inf. Syst. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Shabtai, A. ; Rokach, L. ; Elovici, Y.

One-to-many data linkage is an essential task in many domains, yet only a handful of prior publications have addressed this issue. Furthermore, while traditionally data linkage is performed among entities of the same type, it is extremely necessary to develop linkage techniques that link between matching entities of different types as well. In this paper, we propose a new one-to-many data linkage method that links between entities of different natures. The proposed method is based on a one-class clustering tree (OCCT) that characterizes the entities that should be linked together. The tree is built such that it is easy to understand and transform into association rules, i.e., the inner nodes consist only of features describing the first set of entities, while the leaves of the tree represent features of their matching entities from the second data set. We propose four splitting criteria and two different pruning methods which can be used for inducing the OCCT. The method was evaluated using data sets from three different domains. The results affirm the effectiveness of the proposed method and show that the OCCT yields better performance in terms of precision and recall (in most cases it is statistically significant) when compared to a C4.5 decision tree-based linkage method.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

March 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.