By Topic

Large-scale multimedia data mining using MapReduce framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hanli Wang ; Key Laboratory of Embedded System and Service Computing, Ministry of Education Tongji University, Shanghai 200092, China ; Yun Shen ; Lei Wang ; Kuangtian Zhufeng
more authors

In this paper, the framework of MapReduce is explored for large-scale multimedia data mining. Firstly, a brief overview of MapReduce and Hadoop is presented to speed up large-scale multimedia data mining. Then, the high-level theory and low-level implementation for several key computer vision technologies involved in this work are introduced, such as 2D/3D interest point detection, clustering, bag of features, and so on. Experimental results on image classification, video event detection and near-duplicate video retrieval are carried out on a five-node Hadoop cluster to demonstrate the efficiency of the proposed MapReduce framework for large-scale multimedia data mining applications.

Published in:

Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on

Date of Conference:

3-6 Dec. 2012