By Topic

Accelerating block checkerboard method on GPU for performance enhancement of 2D and 3D Quantum Monte Carlo simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chi-Cheng Chuang ; Smart Network System Institute Institute for Information Industry Taipei, Taiwan ; Yu-Sheng Chiu ; Quey-Liang Kao ; Zhi-Hung Chen
more authors

Quantum Monte Carlo (QMC) simulations for the recent studies on complex materials were confronted by new computational challenges. Traditional approach to accelerate the simulations by parallel Monte Carlo chains faces serious scalability problems since the speedup is reaching the limitation predicted by Amdahl's law. Fine-grained parallelization of matrix kernels is essential to achieve better performance. In this paper, we investigate the performance optimization techniques on GPU for the most time consuming computational kernel in the Determinant Quantum Monte Carlo (DQMC) simulation: multiplication of matrix exponentials. The matrix, derived from the kinetic Hamiltonian, is highly sparse, and its exponential is approximated by the block checkerboard method, which can represent a matrix exponential as a product of a sequence of sparse matrices. The matrix exponentials from 2D and 3D toruses are focused, and various optimization techniques, such as data streaming and concurrent kernels, are proposed. Experiments show that the proposed optimization techniques can improve the SpMM (Sparse Matrix Multiplication) function, modified from the CUDA SKD SpMV function, up to 16 times and 117 times for 2D and 3D problems respectively.

Published in:

Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on

Date of Conference:

3-6 Dec. 2012