By Topic

High Performance Computing in the cloud: Deployment, performance and cost efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roloff, E. ; Inf. Inst., Fed. Univ. of Rio Grande do Sul, Porto Alegre, Brazil ; Diener, M. ; Carissimi, A. ; Navaux, P.O.A.

High-Performance Computing (HPC) in the cloud has reached the mainstream and is currently a hot topic in the research community and the industry. The attractiveness of cloud for HPC is the capability to run large applications on powerful, scalable hardware without needing to actually own or maintain this hardware. In this paper, we conduct a detailed comparison of HPC applications running on three cloud providers, Amazon EC2, Microsoft Azure and Rackspace. We analyze three important characteristics of HPC, deployment facilities, performance and cost efficiency and compare them to a cluster of machines. For the experiments, we used the well-known NAS parallel benchmarks as an example of general scientific HPC applications to examine the computational and communication performance. Our results show that HPC applications can run efficiently on the cloud. However, care must be taken when choosing the provider, as the differences between them are large. The best cloud provider depends on the type and behavior of the application, as well as the intended usage scenario. Furthermore, our results show that HPC in the cloud can have a higher performance and cost efficiency than a traditional cluster, up to 27% and 41%, respectively.

Published in:

Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on

Date of Conference:

3-6 Dec. 2012