By Topic

A Cloud design for user-controlled storage and processing of sensor data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hummen, R. ; Commun. & Distrib. Syst., RWTH Aachen Univ., Aachen, Germany ; Henze, M. ; Catrein, D. ; Wehrle, K.

Ubiquitous sensing environments such as sensor networks collect large amounts of data. This data volume is destined to grow even further with the vision of the Internet of Things. Cloud computing promises to elastically store and process such sensor data. As an additional benefit, storage and processing in the Cloud enables the efficient aggregation and analysis of information from different data sources. However, sensor data often contains privacy-relevant or otherwise sensitive information. For current Cloud platforms, the data owner looses control over her data once it enters the Cloud. This imposes adoption barriers due to legal or privacy concerns. Hence, a Cloud design is required that the data owner can trust to handle her sensitive data securely. In this paper, we analyze and define properties that a trusted Cloud design has to fulfill. Based on this analysis, we present the security architecture of SensorCloud. Our proposed security architecture enforces end-to-end data access control by the data owner reaching from the sensor network to the Cloud storage and processing subsystems as well as strict isolation up to the service-level. We evaluate the validity and feasibility of our Cloud design with an analysis of our early prototype. Our results show that our proposed security architecture is a promising extension of today's Cloud offers.

Published in:

Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on

Date of Conference:

3-6 Dec. 2012