By Topic

Consensus in the network with uniform constant communication delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wang, Xu ; School of Electrical Engineering and Computer Science, Washington State University, Pullman, 99164-2752, U.S.A. ; Saberi, Ali ; Stoorvogel, Anton A. ; Grip, Havard Fjaer
more authors

This paper studies the consensus among identical agents that are at most critically unstable and coupled through networks with uniform constant communication delay. An achievable upper bound of delay tolerance is obtained which explicitly depends on agent dynamics and network topology. The dependence on network topology disappears in the case of undirected networks. For any delay satisfying this upper bound, a controller design methodology without exact knowledge of the network topology is proposed so that the multi-agent consensus in a set of unknown networks can be achieved. Moreover, when the network topology is known, a larger delay tolerance is possible via a topology-dependent consensus controller. The results are illustrated by simulations.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012