By Topic

On a shubert algorithm-based global Extremum Seeking Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nesic, D. ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia ; Nguyen, T. ; Tan, Y. ; Manzie, C.

This paper adapts the so-called Shubert algorithm for Extremum Seeking Control (ESC) to seek the global extremum (in presence of local extrema) of general dynamic plants. Different from derivative based methods that are widely used in ESC, the Shubert algorithm is a good representative of sampling optimization methods. With knowledge of the Lipschitz constant of an unknown static mapping, this deterministic algorithm seeks the global extremum. By introducing “waiting time” the proposed Shubert algorithm-based global extremum seeking guarantees the semi-global practical convergence (in the initial states) to the global extremum if compact sets of inputs are considered. Several numerical examples demonstrate how proposed method may be successfully deployed.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012