By Topic

Improved genetic algorithm for magnetic material two-stage multi-product production scheduling: A case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yefeng Liu ; State Key Lab. of Synthetical Autom. for Process Ind., Northeastern Univ., Shenyang, China ; Tianyou Chai ; Qin, S.J. ; Quanke Pan
more authors

In this paper an improved genetic algorithm (GA) was present for magnetic material two-stage, multi-product, production scheduling problem (TMPS) with parallel machines. TMPS was changed into molding-stage's multi-product production scheduling problem (MMPS) and the scheduling model was set up for the first time. A set of random solutions were explored first, better feasible solutions were obtained by GA. To shorten the solving time and improve solution accuracy, an improved GA was proposed. We improved GA's crossover operator, adopted heuristic greedy 3PM crossover operator (HG3PMCO) to reduce GA's computational time. Through contrast of computational results of MILP, general GA and improved GA, the improved GA has demonstrated its effectiveness and reliability in solving the molding sintering production scheduling problems and the MILP model set up for the first time is reasonable. At last, the improved genetic algorithm was used in molding stage and sintering stage TMPS of magnetic material.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012