Cart (Loading....) | Create Account
Close category search window

Model learning actor-critic algorithms: Performance evaluation in a motion control task

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Grondman, I. ; Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands ; Busoniu, L. ; Babuska, R.

Reinforcement learning (RL) control provides a means to deal with uncertainty and nonlinearity associated with control tasks in an optimal way. The class of actor-critic RL algorithms proved useful for control systems with continuous state and input variables. In the literature, model-based actor-critic algorithms have recently been introduced to considerably speed up the the learning by constructing online a model through local linear regression (LLR). It has not been analyzed yet whether the speed-up is due to the model learning structure or the LLR approximator. Therefore, in this paper we generalize the model learning actor-critic algorithms to make them suitable for use with an arbitrary function approximator. Furthermore, we present the results of an extensive analysis through numerical simulations of a typical nonlinear motion control problem. The LLR approximator is compared with radial basis functions (RBFs) in terms of the initial convergence rate and in terms of the final performance obtained. The results show that LLR-based actor-critic RL outperforms the RBF counterpart: it gives quick initial learning and comparable or even superior final control performance.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.