By Topic

Strong measurement and quantum feedback for persistent Rabi oscillations in circuit QED experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mirrahimi, M. ; INRIA Paris-Rocquencourt, Domaine de Voluceau, Le Chesnay, France ; Huard, B. ; Devoret, M.

We investigate the stabilization of the dynamical state of a superconducting qubit. In a series of papers, A. Korotkov and his co-workers suggested that continuous weak measurement of the state of a qubit and applying an appropriate feedback on the amplitude of a Rabi drive, should maintain the coherence of the Rabi oscillations for arbitrary time. Here, in the aim of addressing a metrological application of these persistent Rabi oscillations, we explore a new variant of such strategies. This variant is based on performing strong measurements in a discrete manner and using the measurement record to correct the phase of the Rabi oscillations. Noting that such persistent Rabi oscillations can be viewed as an amplitude-to-frequency convertor (converting the amplitude of the Rabi microwave drive to a precise frequency), we propose another feedback layer consisting of a simple analog phase locked loop to compensate the low frequency deviations in the amplitude of the Rabi drive.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012