Cart (Loading....) | Create Account
Close category search window
 

A convex formulation of controller synthesis for piecewise-affine slab systems based on invariant sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper presents a controller synthesis method to stabilize piecewise-affine (PWA) slab systems based on invariant sets. Inspired by the theory of sliding modes, sufficient stabilization conditions are cast as a set of Linear Matrix Inequalities (LMIs) by proper choice of an invariant set which is a target sliding surface. The method has two steps: the design of the attractive sliding surface and the design of the controller parameters. While previous approaches to PWA controller synthesis are cast as Bilinear Matrix Inequalities (BMIs) that can, in some cases, be relaxed to LMIs at the cost of adding conservatism, our method leads naturally to a convex formulation. Furthermore, the LMIs obtained in this paper have lower dimension when compared to other methods because the dimension of the closed-loop state space is reduced. A numerical example on flutter suppression is included to demonstrate the effectiveness of the approach.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.