By Topic

Distance optimal formation control on graphs with a tight convergence time guarantee

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jingjin Yu ; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 61801 USA ; M. LaValle

For the task of moving a set of indistinguishable agents on a connected graph with unit edge distance to an arbitrary set of goal vertices, free of collisions, we propose a fast distance optimal control algorithm that guides the agents into the desired formation. Moreover, we show that the algorithm also provides a tight convergence time guarantee (time optimality and distance optimality cannot be simultaneously satisfied). Our generic graph formulation allows the algorithm to be applied to scenarios such as grids with holes (modeling obstacles) in arbitrary dimensions. Simulations, available online1, confirm our theoretical developments.

Published in:

2012 IEEE 51st IEEE Conference on Decision and Control (CDC)

Date of Conference:

10-13 Dec. 2012