By Topic

Optimal circadian rhythm control with light input for rapid entrainment and improved vigilance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiaxiang Zhang ; Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA ; Wen, J.T. ; Julius, A.

Circadian rhythm is the biological process critical to the well being of all living organisms. The circadian rhythms oscillate with a period of approximately 24 hours due to the light-darkness pattern of the solar day. Circadian disruption, as experienced by night shift workers, travelers, submariners or miners, can lead to lower productivity, sleep disorder, and other more serious health problems. Using artificial light to regulate the circadian rhythm has long been proposed. The common approach is to use the phase response curve - the amount of steady state phase shift due to light pulses applied at specified times. In this paper, we consider a commonly used nonlinear second order oscillator model for the circadian rhythm response with light intensity as the input. Our first goal is to establish a performance bound by solving the minimum time control problem for a specified phase shift with contrained light intensity. The result is a much faster phase shift as compared to natural light-darkness pattern. We further extend the optimal control to vigilance, which is regulated in part by circadian rhythm, to maximize a vigilance lower bound for specified time and duration. Based on the two-process model of vigilance, the problem is formulated as an optimal control of switched system, and the optimization strategy is demonstrated via a simulation example.

Published in:

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on

Date of Conference:

10-13 Dec. 2012