By Topic

Measuring topological robustness of networks under sustained targeted attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Piraveenan, M. ; Centre for Complex Syst. Res., Univ. of Sydney, Sydney, NSW, Australia ; Uddin, S. ; Chung, K.S.K.

In this paper, we introduce a measure to analyse the structural robustness of complex networks, which is specifically applicable in scenarios of targeted, sustained attacks. The measure is based on the changing size of the largest component as the network goes through disintegration. We argue that the measure can be used to quantify and compare the effectiveness of various attack strategies. Applying this measure, we confirm the result that scale-free networks are comparatively less vulnerable to random attacks and more vulnerable to targeted attacks. Then we analyse the robustness of a range of real world networks, and show that most real world networks are least robust to attacks based on betweenness of nodes. We also show that the robustness of some networks are more sensitive to the attack strategy compared to others, and given the disparity in the computational complexities of calculating various centrality measures, the robustness coefficient introduced can play a key role in choosing the attack and defence strategies for real world networks. While the measure is applicable to all types of complex networks, we clearly demonstrate its relevance to social network analysis.

Published in:

Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on

Date of Conference:

26-29 Aug. 2012