Cart (Loading....) | Create Account
Close category search window

Learning the Strength of the Factors Influencing User Behavior in Online Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo Hu ; Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Jamali, M. ; Ester, M.

As social networking is moving into the web, the study and exploitation of social correlation has emerged as a hot research topic. Most of these work consider binary social relations, called "friendships". However, online users tend to establish many friendships of varying degree of strength, e.g., relatives, friends, co-workers, and acquaintances. We argue that, due to their different degree of strength, different friend relationships will have greatly varying degrees of correlation and should be distinguished. Besides, social correlation is not the only factor driving user behavior. In this paper, we address the problem of learning the strength of the social correlation, user, item, and sparsity factors in online social networks. We propose a probabilistic model, Factor Weight Model, for learning these strengths which maximize the joint probability of the observed user behavior, i.e., actions on items. Different from existing methods, our model considers not only social correlation, but it also considers the other factors affecting user behavior. We have conducted experiments on four real life data sets from Epinions, Flixster, Flickr, and Digg. Our experiments prove the superiority of our model over a state-of-the-art method in terms of action prediction. We also analyze the contributions of the various factors for the prediction performance.

Published in:

Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on

Date of Conference:

26-29 Aug. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.