By Topic

Classification Analysis in Complex Online Social Networks Using Semantic Web Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Opuszko, M. ; Dept. of Bus. Inf., Friedrich-Schiller-Univ. of Jena, Jena, Germany ; Ruhland, J.

The Semantic Web enables people and computers to interact and exchange information. Based on Semantic Web technologies, different machine learning applications have been designed. Particularly important is the possibility to create complex metadata descriptions for any problem domain, based on pre-defined ontologies. In this paper we evaluate the use of a semantic similarity measure based on pre-defined ontologies as an input for a classification analysis in the context of social network analysis. A link prediction between actors of two real world social networks is performed, which could serve as a recommendation system. The social networks involve different types of relations and nodes. We measure the prediction performance based on a semantic similarity measure as well as traditional approaches. The findings demonstrate that the prediction accuracy based on the semantic similarity is comparable to traditional approaches and shows that data mining on complex social networks using ontology-based metadata can be considered as a very promising approach.

Published in:

Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on

Date of Conference:

26-29 Aug. 2012