By Topic

Multi-Sensor Information Based Remaining Useful Life Prediction With Anticipated Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muheng Wei ; Department of Automation, TNList, Tsinghua University, Beijing, China ; Maoyin Chen ; Donghua Zhou

For a class of multi-sensor dynamic systems subject to latent degradation, the remaining useful life prediction with anticipated performance is mainly considered in this paper. The hidden degradation process is first identified recursively by adopting distributed fusion filtering based on observations from multiple sensors. Then the remaining useful life distribution is predicted on the basis of converged degradation state and parameter updating during the operating process. The uncertainty index is aanalyzed to quantitatively evaluate the benefits of increasing multi-sensor information for predicted remaining useful life, and the sensor selection is also discussed for satisfying the anticipated performance such as variance. Our main results are verified by a numerical example, and a practical case study of the milling machine experiment.

Published in:

IEEE Transactions on Reliability  (Volume:62 ,  Issue: 1 )